PII: S0040-4039(96)01054-4

A New Solution for the Construction of the Piperidine Ring of *Strychnos* Alkaloids from 3a-(o-Nitrophenyl)hexahydroindol-4-ones.

Total Syntheses of (\pm) -Tubifolidine, (\pm) -Dihydroakuammicine, and (\pm) -Akuammicine

Daniel Solé, Josep Bonjoch*, Silvina García-Rubio, Ramon Suriol, and Joan Bosch*

Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028-Barcelona, Spain

Abstract: Alkylation of cis-3a-(o-nitrophenyl)hexahydroindol-4-one 1 with 1-iodo-4-(trimethylsilyl)-2-butyne followed by BF3·Et2O-promoted cyclization of the resulting propargylic silane 2 afforded the tricyclic vinylidene ketone 3, which was further converted to the Strychnos alkaloids tubifolidine, 19,20-dihydroakuammicine, and akuammicine. Copyright © 1996 Elsevier Science Ltd

cis-3a-(o-Nitrophenyl)octahydroindol-4-ones¹ have proved to be useful building blocks for assembling the pentacyclic ABCDE ring system of *Strychnos* alkaloids.² After generation of an enone functionality,³ closure of the bridged piperidine D ring (bond formed C_{15} - C_{20})⁴ has been accomplished either by an intramolecular Michael addition³ or by nickel(0)-promoted cyclization of a vinyl halide.^{5,6} Subsequent or concomitant reductive cyclization of the α -(o-nitrophenyl) ketone moiety completes the pentacyclic *Strychnos* system.

Curan skeleton

In this letter we present an alternative procedure for the formation of the crucial C_{15} - C_{20} bond of *Strychnos* alkaloids from 3a-(o-nitrophenyl)hexahydroindol-4-one 1. It is based on the intramolecular conjugate addition of a propargylic silane to the α,β -unsaturated ketone moiety (Scheme 1).⁷

Thus, alkylation of *cis*-3a-arylhexahydroindol-4-one 1³ with 1-iodo-4-(trimethylsilyl)-2-butyne⁸ led to the propargylic silane 2, which, upon treatment with BF₃·Et₂O, underwent a smooth cyclization to give the key tricyclic ketone 3⁹ in 55% overall yield.¹⁰ This cyclization constitutes the first application of this

Scheme 1. Reagents and Conditions: (i) $ICH_2C = CCH_2SiMe_3$, K_2CO_3 , butanone, 80 °C, 5 h, 65%. (ii) $BF_3 \cdot Et_2O$, CH_2Cl_2 , rt, 20 h, 84%. (iii) H_2 , 10% Pd/C, Na_2CO_3 , MeOH, 18h, 60%. (iv) LDA (2.5 equiv), HMPA (5 equiv), anhyd THF, -78 °C, then $NCCO_2Me$, rt, 30%. (v) H_2 , 10% Pd/C, Na_2CO_3 , MeOH, 18h, 57%. (vi) HCl, then H_2 , 10% Pd/C, MeOH, 100 psi, 1h 15 min, 38%.

methodology of ring closure to the elaboration of a 2-azabicyclo[3.3.1]nonane nucleus. ¹¹ Catalytic hydrogenation of a methanolic solution of 3 in the presence of Pd on charcoal brought about both the reductive cyclization of the α -(o-nitrophenyl) ketone moiety and the stereoselective reduction of the vinylidene side chain to give (\pm)-tubifolidine^{12,13} in 60% yield. The use of PtO₂ as the catalyst was less efficient from the synthetic standpoint, and the best result (48% yield of isolated tubifolidine) was obtained operating from 3-hydrochloride using ethyl acetate as the solvent. ¹⁴

For the synthesis of the *Strychnos* alkaloids with the curan skeleton, which bear an oxidized one-carbon substituent (C-17) linked at C-16, the tricyclic ketone 3 was treated with LDA and then with methyl cyanoformate 15 to give β -keto ester 416 in 30% yield (not optimized). 17 Catalytic hydrogenation of 4 in the presence of Pd on charcoal gave (\pm) -19,20-dihydroakuammicine in 57% yield. 12,18 Interestingly, when the above hydrogenation was carried out from 4-hydrochloride for a short time, a 3:1 mixture of (\pm) -akuammicine (pseudoakuammicine) 19,20 and (\pm) -19,20-dihydroakuammicine was obtained in 50% yield.

The above results not only provide new solutions for the construction of the piperidine ring of *Strychnos* alkaloids from 3a-(o-nitrophenyl)hexahydroindol-4-ones but also further illustrate the usefulness of the strategy for indole alkaloid synthesis based on the elaboration of the indole ring in a late synthetic stage.²¹ The C-20 vinylidene side chain of 3 might be further elaborated into the variety of functionalized two-carbon substituents present at C-20 in *Strychnos* alkaloids.

Acknowledgment. This work was supported by the DGICYT, Spain (projects PB94-0214 and PB94-0858). Thanks are also due to the "Comissionat per a Universitats i Recerca", Generalitat de Catalunya, for Grant SGR95-0428.

References and Notes

- (a) Solé, D.; Bonjoch, J. Tetrahedron Lett. 1991, 32, 5183-5183. (b) Solé, D.; Bosch, J.; Bonjoch, J. Tetrahedron 1996, 52, 4013-4028.
- For recent reviews, see: (a) Sapi, J.; Massiot, G. In Monoterpenoid Indole Alkaloids, Saxton J.E., Ed. In
 The Chemistry of Heterocyclic Compounds, Taylor, E.C., Ed. Supplement to Vol. 25, Part 4, pp 279355, Wiley: New York, 1994. (b) Bosch, J.; Bonjoch, J.; Amat, M. In The Alkaloids, Cordell, G.A., Ed.,
 Vol. 48, pp 75-189, Academic Press: New York, 1996.
- 3. Bonjoch, J.; Solé, D.; Bosch, J. J. Am. Chem. Soc. 1993, 115, 2064-2065.
- 4. The biogenetic numbering and ring labeling is used throughout this paper: Le Men, J.; Taylor, W.I. Experientia 1965, 21, 508-510.
- (a) Bonjoch, J.; Solé, D.; Bosch, J. J. Am. Chem. Soc. 1995, 117, 11017-11018. (b) Solé, D.; Bonjoch, J.; Bosch, J. J. Org Chem. 1996, 61, in press.
- 6. For other synthesis of Strychnos alkaloids involving the formation of this strategic bond: (a) Rawal, V.H.; Michoud, C.; Monestel, R.F. J. Am. Chem. Soc. 1993, 115, 3030-3031. (b) Rawal, V.H.; Iwasa, S.; Michoud, C. J. Org. Chem. 1994, 59, 2685-2686. (c) Kuehne, M.E.; Wang, T.; Seraphin, D.; Synlett. 1995, 557-558. (d) Stork, G. Presented at the Ischia Advanced School of Organic Chemistry, Ischia Porto, Italy, September 21, 1992. We thank Professor Gilbert Stork for sending us a detailed scheme of his synthesis of strychnine.
- For the intramolecular addition of propargylic silanes to enones, see Schinzer, D. Synthesis 1988, 263-273
- 8. (a) Mastalerz, H. J. Org. Chem. 1984, 49, 4092-4094. (b) Klaver, W.J.; Moolenaar, M.J.; Hiemstra, H.; Speckamp, W.N. Tetrahedron 1988, 44, 3805-3818.
- 9. 3: ¹H NMR (CDCl₃, 200 MHz) 2.26-2.38 (m, 3H), 2.68 (d, 2H, *J* = 4 Hz), 2.92-3.10 (m, 4H), 3.25 (m, 1H), 3.62 (dt, 1H, *J* = 14, 2.4 Hz), 3.95 (broad s, 1H), 4.75 (dd, 2H, *J* = 4.9, 2.4 Hz), 7.38-7.55 (m, 4H); ¹³C NMR (CDCl₃, 50.3 MHz) 25.4 (C-14), 31.8 (C-15), 38.9 (C-6), 46.5 (C-16), 49.7 (C-21), 54.9 (C-5), 62.2 (C-7), 65.0 (C-3), 76.1 (C-18), 99.8 (C-20), 125.1 (C-12), 127.9 (C-11), 129.1 (C-9), 132.0 (C-10), 133.8 (C-8), 150.9 (C-13), 203.5 (C-19), 210.1 (C-2); IR (film) 1950, 1699, 1532, 1366 cm⁻¹; HRMS Calcd for C₁₈H₁₈N₂O₃ 310.1325, found 310.1317.
- 10. All yields are from material purified by column chromatography. Satisfactory analytical and spectroscopic data were obtained for all new compounds.
- For the use of propargylic silanes in the synthesis of other azabicyclo derivatives, see: (a) Hiemstra, H.;
 Klaver, W.J.; Speckamp, W.N. Recl. Trav. Chim. Pays-Bas 1986, 105, 299-306. (b) Klaver, W.J.;
 Hiemstra, H.; Speckamp, W.N. J. Am. Chem. Soc. 1989, 111, 2588-2595.
- 12. This alkaloid was identified by comparison of its ¹H and ¹³C NMR spectral data with those previously reported: Amat, M.; Linares, A.; Bosch, J. J. Org. Chem. 1990, 55, 6299-6312.

- 13. For previous total syntheses of tubifolidine, see: (a) Dadson, B.A.; Harley-Mason, J.; Foster, G.H. J. Chem. Soc., Chem. Commun. 1968, 1233. (b) Ban, Y.; Yoshida, K.; Goto, J.; Oishi, T.; Takeda, E. Tetrahedron 1983, 39, 3657-3668. See also references 3 and 12.
- 14. The complete reduction (PtO₂) of the α -(o-nitrophenyl) ketone moiety of 3 was slower in ethanolic solution and, after longer reaction times (\approx 40h), N_a -ethyltubifolidine was isolated as the major product (20%).
- 15. Angle, S.R.; Fevig, J.M.; Knight, S.D.; Marquis, R.W., Jr.; Overman, L.E. J. Am. Chem. Soc. 1993, 115, 3966-3977. See also reference 3.
- 16. 4: ¹H NMR (CDCl₃, 300 MHz) 2.07 (t, 2H, *J* = 3.2 Hz, H-14), 2.43 (ddd, 1H, *J* = 15.2, 7.6, 3.5 Hz, H-6), 2.71 (dt, 1H, *J* = 14.8, 7.4 Hz, H-6), 2.96 (ddd, 1H, *J* = 11.8, 7.6, 3.5 Hz, H-5), 3.16 (dt, 1H, *J* = 13, 4 Hz, H-21), 3.15-3.27 (m, 1H, H-5), 3.55 (d, 1H, *J* = 13.4 Hz, H-21), 3.62 (broad s, 1H, H-15), 3.83 (s, 3H, OCH₃), 3.91 (broad s, 1H, H-3), 4.70 (dd, 1H, *J* = 11.1, 3 Hz, H-18), 4.75 (dd, 1H, *J* = 11.1, 3 Hz, H-18), 7.30-7.45 (m, 2H), 7.45-7.55 (m, 2H), 12.6 (s, 1H, OH); ¹³C NMR (CDCl₃, 75.4 MHz) 24.1 (C-14), 30.5 (C-15), 36.4 (C-6), 48.3 (C-21), 52.0 (OMe), 54.8 (C-5), 55.3 (C-7), 65.2 (C-3), 75.2 (C-18), 97.1 (C-20), 102.5 (C-16), 124.8 (C-12), 127.8 (C-11), 131.1 (C-9), 132.0 (C-10), 133.6 (C-8), 150.9 (C-13), 172.2 (C-2), 172.8 (C-17), 203.2 (C-19); IR (film) 1650, 1611, 1530, 1363, 1246 cm⁻¹.
- 17. The corresponding O-acylated product was formed in $\approx 5\%$ yield in some runs. Unreacted starting ketone was recovered to a considerable extent (30%).
- 18. For the only previous synthesis of 19,20-dihydroakuammicine, see reference 12.
- Akuammicine was identified by comparison of its ¹H NMR (300 MHz) spectral data with those reported for the natural product: (a) Hu, W.-L.; Zhu, J.-P.; Hesse, M. *Planta Med.* 1989, 55, 463-466.
 (b) Kuehne, M.E.; Xu, F.; Brook, C.S. *J. Org. Chem.* 1994, 59, 7803-7806. The R_f values of our synthetic akuammicine in several solvent mixtures were also coincident with those of an authentic sample of the alkaloid kindly provided by Professor Georges Massiot (University of Reims).
- 20. For previous syntheses of this racemic alkaloid, see references 5b, 15, and 19b.
- 21. Knight, S.D.; Overman, L.E.; Pairaudeau, G. J. Am. Chem. Soc. 1995, 117, 5776-5788. See also references 3, 5, and 15.

(Received in UK 26 April 1996; accepted 31 May 1996)