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Abstract: Alkylation of cis-3a-(o-nitrophenyl)hexahydroindol-4-one 1 with 1-iodo-4-

(trimethylsilyl)-2-butyne followed by BF3-EtpO-promoted cyclization of the resulting
propargylic silane 2 afforded the tricyclic vinylidene ketone 3, which was further converted
to the Strychnos alkaloids tubifolidine, 19,20-dihydroakuammicine, and aknammicine.
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cis-3a-(o-Nitrophenyl)octahydroindol-4-ones! have proved to be useful building blocks for
assembling the pentacyclic ABCDE ring system of Strychnos alkaloids.? After generation of an enone
functionality,3 closure of the bridged piperidine D ring (bond formed C;5-Cap)# has been accomplished either
by an intramolecular Michael addition3 or by nickel(0)-promoted cyclization of a vinyl halide.3:6 Subsequent
or concomitant reductive cyclization of the ct-(o-nitrophenyl) ketone moiety completes the pentacyclic

Strychnos system.

Curan skeleton

In this letter we present an alternative procedure for the formation of the crucial Cys-Cpg bond of
Strychnos alkaloids from 3a-(o-nitrophenyl)hexahydroindol-4-one 1. It is based on the intramolecular
conjugate addition of a propargylic silane to the o, B-unsaturated ketone moiety (Scheme 1).”

Thus, alkylation of cis-3a-arylhexahydroindol-4-one 13 with 1-iodo-4-(trimethylsilyl)-2-butyne8 led
to the propargylic silane 2, which, upon treatment with BF3-Et;0, underwent a smooth cyclization to give the
key tricyclic ketone 3% in 55% overall yield.!0 This cyclization constitutes the first application of this
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Scheme 1. Reagents and Conditions: (i) ICH)C==CCH;SiMe3, K2CQO3, butanone, 80 °C, 5 h, 65%. (ii)
BF3-Etp0, CH,Cly, 1t, 20 h, 84%. (iii) Hy, 10% Pd/C, NapCO3, MeOH, 18h, 60%. (iv) LDA (2.5 equiv),
HMPA (5 equiv), anhyd THF, -78 °C, then NCCO2Me, rt, 30%. (v) Hp, 10% Pd/C, NapCO3, MeOH, 18h,
57%. (vi) HC], then Hp, 10% Pd/C, MeOH, 100 psi, 1h 15 min, 38%.

methodology of ring closure to the elaboration of a 2-azabicyclo[3.3.1]nonane nucleus.!l Catalytic
hydrogenation of a methanolic solution of 3 in the presence of Pd on charcoal brought about both the
reductive cyclization of the a-(o-nitrophenyl) ketone moiety and the stereoselective reduction of the
vinylidene side chain to give (¥)-tubifolidine!2.13 in 60% yield. The use of PtO; as the catalyst was less
efficient from the synthetic standpoint, and the best result (48% yield of isolated tubifolidine) was obtained
operating from 3-hydrochloride using ethyl acetate as the solvent.14

For the synthesis of the Strychnos alkaloids with the curan skeleton, which bear an oxidized one-
carbon substituent (C-17) linked at C-16, the tricyclic ketone 3 was treated with LDA and then with methyl
cyanoformate!3 to give B-keto ester 416 in 30% yield (not optimized).17 Catalytic hydrogenation of 4 in the
presence of Pd on charcoal gave (+)-19,20-dihydroakuammicine in 57% yield.12:!18 Interestingly, when the
above hydrogenation was carried out from 4-hydrochloride for a short time, a 3:1 mixture of (%)-
akuammicine (pseudoakuammicine)!9.20 and ()-19,20-dihydroakuammicine was obtained in 50% yield.

The above results not only provide new solutions for the construction of the piperidine ring of
Strychnos alkaloids from 3a-(o-nitrophenyl)hexahydroindol-4-ones but also further illustrate the usefulness
of the strategy for indole alkaloid synthesis based on the elaboration of the indole ring in a late synthetic
stage.2! The C-20 vinylidene side chain of 3 might be further elaborated into the variety of functionalized
two-carbon substituents present at C-20 in Strychnos alkaloids.
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